

Photocatalytic Reduction of Low Concentration of CO₂

Takuya Nakajima,[†] Yusuke Tamaki,[†] Kazuki Ueno,[†] Eishiro Kato,[†] Tetsuya Nishikawa,[†] Kei Ohkubo,[†] Yasuomi Yamazaki,[†] Tatsuki Morimoto,^{*,‡,§} and Osamu Ishitani^{*,†}

[†]Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

[‡]Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan

[§]PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

Supporting Information

ABSTRACT: A novel molecular photocatalytic system with not only high reduction ability of CO₂ but also high capture ability of CO₂ has been developed using a Ru(II)– Re(I) dinuclear complex as a photocatalyst. By using this photocatalytic system, CO₂ of 10% concentration could be selectively converted to CO with almost same photocatalysis to that under a pure CO₂ atmosphere (TON_{CO} > 1000, Φ_{CO} > 0.4). Even 0.5% concentration of CO₂ was reduced with 60% initial efficiency of CO formation by using the same system compared to that using pure CO₂ (TON_{CO} > 200). The Re(I) catalyst unit in the photocatalyst can efficiently capture CO₂, which proceeds CO₂ insertion to the Re–O bond, and then reduce the captured CO₂ by using an electron supplied from the photochemically reduced Ru photosensitizer unit.

tilization of CO_2 for production of energy-rich carbon compounds using solar light as an energy source has been a very attractive research field because it can solve serious global problems, i.e., energy crisis, depletion of carbon resources, and global warming.^{1,2} Exhaust gases discharged from heavy industries include relatively low concentrations of CO₂. As a typical example, exhaust gas from fire power plants includes only 3%-13% CO₂ with N₂ as the main component;³ however, most research on photochemical and electrochemical reduction of CO₂ have been conducted using pure CO₂ to achieve high reaction rates of the active reaction intermediates with CO_2^{4-12} This is problematic because condensation of CO₂, achieved by adsorption and desorption processes with amines and MOFs¹³⁻¹⁶ or separation with filters,¹⁴ is a highly energy-consuming process. If low concentrations of CO₂ can be directly utilized, a highly promising technology can be developed. To the best of our knowledge, there has been only one report of a visible-light driven photocatalytic reduction system for low concentrations of CO₂, of which catalyst was integrated into MOF as CO₂ adsorption active sites.¹⁷ Although the MOF system could reduce even 5% concentration of CO₂ with about 1.3 times higher efficiency compared to that of the corresponding homogeneous system without MOF, its photocatalysis is not satisfactory because of low durability $(TON_{HCOOH} = 33.3)$ and low selectivity of CO₂ reduction (71% with H_2 evolution; $TON_{H2} = 14.5$). In natural

photosynthesis, plants have acquired elaborate systems during the evolutionary process to solve the above-mentioned problem, i.e., the Hatch–Slack cycle for concentration of CO_2 and the Calvin cycle for CO_2 reductive fixation.¹⁸ A novel photocatalytic system with a different working principle for CO_2 condensation is required for the development of artificial photosynthesis research.

We recently found that Re(I) complexes with deprotonated triethanolamine as a monodentate ligand can efficiently capture CO₂ to be converted to an aminoethylcarbonato complex, i.e., *fac*-[Re(bpy)(CO)₃{OC(O)OC₂H₄N(C₂H₄OH)₂}].^{19,20} In addition, some *fac*-[Re(N \wedge N)(CO)₃L]-type complexes can efficiently catalyze the selective reduction of CO₂ to give CO.⁴ If both these fascinating properties, CO₂ capture and reduction of CO₂, can be harmonized in one system, a novel photocatalytic system for reduction of low concentration CO₂ could be developed. Herein, we report a system with a heteronuclear bimetal complex comprising a Ru(II) redox photosensitizer and a Re(I) catalyst unit with high capability of CO₂ capture. We succeeded in reducing dilute CO₂ of which concentration was 50%–0.5% with high turnover numbers and high quantum yields.

A dinuclear complex composed of a tris-diimine Ru(II) unit as a photosensitizer and a tricarbonyl diimine Re(I) unit with a labile monodentate ligand as a catalyst, connected with a dimethylene ether $(-CH_2OCH_2-)$ linkage (Ru-Re-DMF) in Figure 1a), was used in this study; this complex was recently investigated as an efficient photocatalyst for CO₂ reduction under a pure CO₂ atmosphere.²⁰ The CO₂-capturing ability of the complex was examined in the presence of triethanolamine (TEOA). Addition of TEOA to a dimethylformamide (DMF) solution containing Ru-Re-DMF caused ligand substitution of DMF on the Re unit of Ru-Re-DMF with TEOA giving a Ru(II)-Re(I) complex with a deprotonated triethanolamine ligand (Ru-Re-OC₂H₄NR₂) (Process 1 in Figure 1a). An equilibrium constant ($K_{LS} = 60$) for ligand substitution was obtained using the FT-IR spectra, as shown in Figures 1b and S1. Introduction of CO₂ into a solution of Ru-Re-DMF and $Ru-Re-OC_2H_4NR_2$ ([CO₂] = 1.1 mM) induced a drastic change in the $\nu_{\rm CO}$ bands (2019 and 1914 cm⁻¹) in the FT-IR spectrum of the solution (Figure 1c), clearly indicating that

Received: August 23, 2016 Published: October 5, 2016

Figure 1. Ligand substitution of the dinuclear Ru-Re-DMF complex and the CO₂ capture behavior in a mixed solvent system of DMF and TEOA (5:1 v/v). (a) Three complexes, Ru-Re-DMF, $Ru-Re-OC_2H_4NR_2$, and $Ru-Re-OC(O)OC_2H_4NR_2$, observed in the mixed solvent system under a CO₂ atmosphere. (b) IR spectrum for Process 1 under an Ar atmosphere, equilibrium between Ru-Re-DMF and $Ru-Re-OC_2H_4NR_2$. (c) IR spectrum for Process 2 under conditions of $[CO_2] = 1.1$ mM and equilibrium between $Ru-Re-OC_2H_4NR_2$ and $Ru-Re-OC(O)OC_2H_4NR_2$. (d) Composition ratios of the complexes depending on CO₂ concentration in a solution wherein the inset shows the same figure with a wider concentration of CO₂. Black, blue, and red dots and lines in panels b, c, and d denote the complexes Ru-Re-DMF, $Ru-Re-OC_2H_4NR_2$, and Ru-Re-OC(O)- $OC_2H_4NR_2$, respectively.

most of the Re unit in the Ru(II)–Re(I) complexes was converted to the aminoethylcarbonato complex (**Ru–Re– OC(O)OC₂H₄NR₂**, Process 2 in Figure 1a) even in a dilute solution of CO₂ because the ν_{CO} bands are very similar to those of *fac*-[Re(bpy)(CO)₃{OC(O)OC₂H₄N(C₂H₄OH)₂}] (ν_{CO} = 2020 and 1915 cm⁻¹).¹⁹ Identification of this CO₂ adduct was also confirmed by ¹³C NMR measurements (Figure S2). The equilibrium constant for this CO₂ capture reaction (K_{CO2} , Process 2) was 1.5 × 10³ M⁻¹, which was comparable to that of the mononuclear Re(I) complex (K_{CO2} = 1.7 × 10³ M⁻¹).¹⁹ According to this large equilibrium constant for CO₂ capture, bubbling with Ar gas containing 10% CO₂ (abbreviated as "10% CO₂ gas") converted 94% of the complex to **Ru–Re– OC(O)OC₂H₄NR₂;** moreover, the use of 1% and 0.5% CO₂ gave 65% and 48% formation yield of **Ru–Re–OC(O)**-**OC₂H₄NR₂**, respectively (Figure 1d).²¹

The photocatalytic ability of the Ru(II)-Re(I) complex for CO_2 reduction was investigated using a gas-flow cell with Arbased gas containing various concentrations of CO_2 (Figure S3). As a typical run, a DMF-TEOA solution (5:1 v/v)

containing **Ru–Re–DMF** and **Ru–Re–OC**₂**H**₄**NR**₂ (total concentration was 0.05 mM) as well as 1,3-dimethyl-2phenyl-2,3-dihydro-1H-benzo[*d*]imidazole (BIH, 0.1 M) as a sacrificial reductant²² was bubbled with 10% CO₂ for 30 min. This solution was irradiated at $\lambda_{ex} = 480$ nm and the same gas containing 10% CO₂ was continuously bubbled into the reaction solution during irradiation. Only CO was selectively produced and H₂ was not detected (Figure 2). The turnover

Figure 2. Photocatalytic reaction using **Ru–Re–DMF** (n = 3) and **Ru–Re–OC₂H₄NR₂** (n = 2) under a 100% or 10% CO₂ atmosphere, and turnover numbers for CO or H₂ formation (TON_{CO} or TON_{H2}) for 19 h, where blue, green, red, and orange dots denote the turnover numbers of CO formation under 100% CO₂, CO formation under 10% CO₂, H₂ formation under 100%, and H₂ formation under 10%, respectively. TON_{CO} or TON_{H2} are defined as [amount of evolved CO or H₂]/[amount of the dinuclear metal complex in solution].

Figure 3. Photocatalytic CO formation under various concentrations of CO_2 (0.5%-100%).

numbers for CO formation (TON_{CO}) were 303 (303 μ mol) and 871 (871 μ mol) after 5 h and 19 h of irradiation, respectively, and increased to 1020 (1020 μ mol) after 26 h of irradiation (Figure S4). It can be noted that the time course of CO formation using 10% CO₂ was similar to that of pure CO₂, particularly up to the 5 h irradiation time, as shown in Figures 2 and 3. Therefore, this photocatalytic system can supply a good method for reducing CO₂, even by using gas containing only

10% CO₂, without the use of other methods for CO₂ condensation.

Similar experiments were conducted using different concentrations of CO₂, i.e., bubbling with Ar containing 50%, 1%, or 0.5% CO₂ during irradiation (Figures 3 and S5). The time courses of CO formation were similar among the cases using 100%, 50%, and 10% CO₂ concentrations. The quantum yield of CO formation was determined as $\Phi_{\rm CO}$ = 0.50 under a 100% CO₂ atmosphere (Figure S6), and similar values were obtained in cases with 10% CO2. Even in cases using gas with a much lower concentration of CO2, i.e., only 1% or 0.5%, CO was produced with about 80% and 60% efficiencies, respectively, compared to using 100% CO₂ for 1 h of irradiation. Although further irradiation lowered the photocatalytic ability, the TON_{CO} reached 215 and 205 after 19 h of irradiation, respectively (Figure S5), which are much higher than other reported systems that use relatively low concentrations of CO₂ (2.5 for CO, 33.3 for HCOOH, 14.5 for H_2 under 5% CO_2 atmosphere).

For checking the function of TEOA, which is required to obtain the CO₂ adduct **Ru–Re–OC(O)OC₂H₄NR₂**, reference experiments without TEOA were investigated. When similar photocatalytic reactions in the absence of TEOA were conducted with pure CO₂, selective CO formation was observed, although its efficiency was about three times lower than in the presence of TEOA (Figure 4a, TON_{CO} = 101 for 5

Figure 4. Profound influence on photocatalytic CO_2 reduction by triethanolamine (a) photocatalytic reactions under 100% and 1% CO_2 atmosphere with/without TEOA. (b) Linear relationship between the initial rate of CO formation and the concentration of the CO_2 -capturing complex Ru–Re–OC(O)OC₂H₄NR₂.

h of irradiation). As previously reported, TEOA works as a base for deprotonation of the one-electron oxidized form of BIH (BIH^{+•}), which should suppress back electron transfer from the one-electron reduced form of the photocatalyst to BIH^{+•} as one of the obstruction processes of the photocatalytic reduction (eq 1).²²On the other hand, when 1% CO₂ was used, formation of

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

CO was not observed. This result clearly indicates that TEOA is necessary for reduction of CO_2 under a 1% CO_2 atmosphere. For determining the role of TEOA as a proton source, photocatalysis using the dinuclear complex in the presence of tri(*n*-propyl)ammonium hexafluorophosphate (25 mM) instead of TEOA was investigated and formation of CO was not observed. It can be noted that even in the presence of this proton source, the emission from the excited Ru unit of the

dinuclear complex was almost quantitatively quenched by BIH. The $[Ru^{II}(dmb)_3]^{2+}$ complex as a model of the photosensitizer unit of the dinuclear complex was efficiently reduced under similar reaction conditions, and the corresponding one-electron reduced species $[Ru^{II}(dmb^{-\bullet}) (dmb)_2]^+$ accumulated in the reaction solution during the irradiation (Figure S7). These results clearly indicate that photochemical reduction of the dinuclear complex should proceed even in the presence of the proton source; however, as described above, in the absence of TEOA, reduction of CO_2 did not proceed under a 1% CO_2 atmosphere.

It should be also pointed out that the saturated concentration of CO₂ in the TEOA–DMF mixture $(0.14 \text{ M})^{21}$ is lower than that in pure DMF (0.20 M).²³ Therefore, from a viewpoint of the concentration of CO₂ in the reaction solution, DMF should be a better solvent than the mixture of DMF and TEOA. Moreover, the viscosity of TEOA is much higher than that of DMF. This should be also another defect of the DMF-TEOA mixed solvent for photocatalytic reactions because of the slower diffusion rates of the photocatalyst and CO₂ in the DMF-TEOA solution than in DMF. More efficient photocatalytic performance in the presence of TEOA, despite these unfavorable physical properties of TEOA, indicates that TEOA and **Ru–Re–OC(O)OC₂H₄NR₂ are crucial for CO₂ reduction under low concentrations of CO₂.**

Figure 4b shows the correlation between the formation rate of CO in the initial stages of the photocatalytic reaction and the concentration of $Ru-Re-OC(O)OC_2H_4NR_2$ in the reaction solution before irradiation and indicates the concentration of CO_2 in the flow gas. These results, combined with the reference experiments described above, clearly indicate that $Ru-Re-OC(O)OC_2H_4NR_2$ mainly worked as a photocatalyst for CO_2 reduction to give CO. In other words, $Ru-Re-OC_2H_4NR_2$ can play the role of a precursor to the photocatalyst and of a collector of CO_2 from gas containing low concentrations of CO_2 ; the large equilibrium constant of formation of $Ru-Re-OC(O)OC_2H_4NR_2$ from $Ru-Re-OC_2H_4NR_2$ and CO_2 makes the photocatalytic reduction of low concentration of CO_2 possible.

The lower durability of the photocatalyst under 1% and 0.5% CO_2 concentrations compared to those under 100%-10% (Figure S5) is another evidence for the important role of **Ru**– $Re-OC(O)OC_2H_4NR_2$, because a part of the Re complexes in solution (35% and 52% of the added Re complex under 1% and 0.5% CO₂ concentrations, respectively) was not converted to the CO₂ adduct, i.e., Ru-Re-OC₂H₄NR₂ and Ru-Re-DMF, under 1% and 0.5% CO₂. Although these Re complexes without the aminoethylcarbonate ligand should be photochemically reduced and ligand loss from the one-electron-reduced complexes should produce the corresponding 17-electrons species of the Re(I) complex moiety. It was reported that the reaction rate of this species (mostly its solvento complex) with CO_2 was slow (k = ~0.003 s⁻¹ in THF).²⁴ Under low concentrations of CO₂, therefore, the slower rate of the reaction with CO₂ should cause partial decomposition of the photocatalyst, which resulted in ceasing of CO formation.

In conclusion, we developed a new photocatalytic system using a Ru–Re binuclear complex, which can reduce dilute CO₂ down to 10% CO₂ with high selectivity for CO formation (~100%), high durability (TON_{CO} > 1000), and high efficiency (Φ_{CO} > 40%). Even under 0.5% CO₂ gas, this system can reduce CO₂ selectively to CO with ~60% the efficiency of a system using pure CO₂. This is the first example of a molecular

Journal of the American Chemical Society

photocatalyst that has the ability to concentrate and photochemically reduce CO_2 . This new concept, i.e., the use of efficient CO_2 insertion reactions to metal–oxygen bond for photocatalytic reduction of CO_2 , holds great potential for developing technologies for reduction of low concentrations of CO_2 .

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b08824.

Materials, methods, and synthetic procedures (PDF)

AUTHOR INFORMATION

Corresponding Authors

*T.M. morimotottk@teu.ac.jp *O.I. ishitani@chem.titech.ac.jp

O.i. isintani@enemi.titeen.ac.jp

Funding

No competing financial interests have been declared.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research on CREST from JST and Innovative Areas "Artificial photosynthesis (AnApple)" from JSPS.

REFERENCES

(1) House, R. L.; Iha, N. Y. M.; Coppo, R. L.; Alibabaei, L.; Sherman, B. D.; Kang, P.; Brennaman, M. K.; Hoertz, P. G.; Meyer, T. J. J. *Photochem. Photobiol., C* **2015**, *25*, 32.

(2) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.

(3) Last, G. V.; Schmick, M. T. Environ. Earth Sci. 2015, 74, 1189.

- (4) Yamazaki, Y.; Takeda, H.; Ishitani, O. J. Photochem. Photobiol., C 2015, 25, 106.
- (5) Sahara, G.; Ishitani, O. Inorg. Chem. 2015, 54, 5096.
- (6) Izumi, Y. Coord. Chem. Rev. 2013, 257, 171.
- (7) Windle, C. D.; Perutz, R. N. Coord. Chem. Rev. 2012, 256, 2562.

(8) Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O. Top. Curr. Chem. 2011, 303, 151.

- (9) Takeda, H.; Koike, K.; Morimoto, T.; Inumaru, H.; Ishitani, O. *Adv. Inorg. Chem.* **2011**, *63*, 137.
- (10) Morris, A. J.; Meyer, G. J.; Fujita, E. Acc. Chem. Res. 2009, 42, 1983.

(11) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130, 2023.

(12) Lehn, J.-M.; Ziessel, R. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 701.

(13) Dutcher, B.; Fan, M.; Russell, A. G. ACS Appl. Mater. Interfaces 2015, 7, 2137.

(14) Kenarsari, S. D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A. G.; Wei, Q.; Fan, M. *RSC Adv.* **2013**, *3*, 22739.

(15) Horike, S.; Kishida, K.; Watanabe, Y.; Inubushi, Y.; Umeyama, D.; Sugimoto, M.; Fukushima, T.; Inukai, M.; Kitagawa, S. J. Am. Chem. Soc. **2012**, 134, 9852.

(16) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. *Science* **2008**, *319*, 939.

(17) Kajiwara, T.; Fujii, M.; Tsujimoto, M.; Kobayashi, K.; Higuchi, M.; Tanaka, K.; Kitagawa, S. Angew. Chem., Int. Ed. 2016, 55, 2697.

(18) Hatch, M. D. Biochim. Biophys. Acta, Rev. Bioenerg. **1987**, 895, 81.

(19) Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. J. Am. Chem. Soc. **2013**, 135, 16825. (20) Kato, E.; Takeda, H.; Koike, K.; Ohkubo, K.; Ishitani, O. *Chem. Sci.* **2015**, *6*, 3003.

(21) The saturated concentration of CO_2 in DMF-TEOA was evaluated at 0.14 M by titration using with $Ba(OH)_2$ and by spectroscopic analysis using mononuclear Re(I) complex. We also confirmed the good linearity between the CO_2 concentrations in the solution and the partial pressure of CO_2 in the DMF-TEOA mixed solution. The detailed procedures and the data are shown in Supporting Information.

(22) Tamaki, Y.; Koike, K.; Morimoto, T.; Ishitani, O. J. Catal. 2013, 304, 22.

(23) Konno, H.; Kobayashi, A.; Sakamoto, K.; Fagalde, F.; Katz, N. s. E.; Saitoh, H.; Ishitani, O. *Inorg. Chim. Acta* **2000**, 299, 155.

(24) Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. J. Am. Chem. Soc. 2003, 125, 11976-11987.